首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6230篇
  免费   1043篇
  国内免费   2541篇
化学   6307篇
晶体学   142篇
力学   730篇
综合类   111篇
数学   334篇
物理学   2190篇
  2024年   13篇
  2023年   151篇
  2022年   276篇
  2021年   327篇
  2020年   372篇
  2019年   269篇
  2018年   234篇
  2017年   297篇
  2016年   376篇
  2015年   298篇
  2014年   346篇
  2013年   525篇
  2012年   399篇
  2011年   443篇
  2010年   378篇
  2009年   473篇
  2008年   494篇
  2007年   466篇
  2006年   433篇
  2005年   410篇
  2004年   389篇
  2003年   324篇
  2002年   285篇
  2001年   231篇
  2000年   228篇
  1999年   150篇
  1998年   188篇
  1997年   156篇
  1996年   131篇
  1995年   139篇
  1994年   135篇
  1993年   110篇
  1992年   102篇
  1991年   50篇
  1990年   44篇
  1989年   34篇
  1988年   38篇
  1987年   22篇
  1986年   9篇
  1985年   14篇
  1984年   14篇
  1983年   14篇
  1982年   11篇
  1981年   4篇
  1979年   3篇
  1977年   2篇
  1973年   1篇
  1971年   2篇
  1957年   4篇
排序方式: 共有9814条查询结果,搜索用时 15 毫秒
991.
The recent successful breakthrough of sub-3 μm shell particles in HPLC has triggered considerable research efforts toward the design of new brands of core-shell particles. We investigated the mass transfer mechanism of a few analytes in narrow-bore columns packed with prototype 1.7 μm shell particles, made of 1.0, 1.2, and 1.4 μm solid nonporous cores surrounded by porous shells 350, 250, and 150 nm thick, respectively. Three probe solutes, uracil, naphthalene, and insulin, were chosen to assess the kinetic performance of these columns. Inverse size exclusion chromatography, peak parking experiments, and the numerical integration of the experimental peak profiles were carried out in order to measure the external, internal, and total column porosities, the true bulk diffusion coefficients of these analytes, the height equivalent to a theoretical plate, the longitudinal diffusion term, and the trans-particle mass transfer resistance term. The residual eddy diffusion term was measured by difference. The results show the existence of important trans-column velocity biases (7%) possibly due to the presence of particle multiplets in the slurry mixture used during the packing process. Our results illustrates some of the difficulties encountered by scientists preparing and packing shell particles into narrow-bore columns.  相似文献   
992.
Quantum chemical calculations using DFT at the B3LYP level have been carried out for the reaction of ethylene with the group-7 compounds ReO2(CH3)(CH2) (Re1), TcO2(CH3)(CH2) (Tc1) and MnO2(CH3)(CH2) (Mn1). The calculations suggest rather complex scenarios with numerous pathways, where the initial compounds Re1-Mn1 may either engage in cycloaddition reactions or numerous addition reactions with concomitant hydrogen migration. There are also energetically low-lying rearrangements of the starting compounds to isomers which may react with ethylene yielding further products. The [2 + 2]Re,C cycloaddition reaction of the starting molecule Re1 is kinetically and thermodynamically favored over the [3 + 2]C,O and [3 + 2]O,O cycloadditions. However, the reaction which leads to the most stable product takes place with initial rearrangement to the dioxohydridometallacyclopropane isomer Re1a that adds ethylene with concomitant hydrogen migration yielding Re1a-1. The latter reaction has a slightly higher barrier than the [2 + 2]Re,C cycloaddition reaction. The direct [3 + 2]C,O cycloaddition becomes more favorable than the [2 + 2]M,C reaction for the starting compounds Tc1 and Mn1 of the lighter metals technetium and manganese but the calculations predict that other reactions are kinetically and thermodynamically more favorable than the cycloadditions. The reactions with the lowest activation barriers lead after rearrangement to the ethyl substituted dioxometallacyclopropanes Tc1a-1 and Mn1a-1. The manganese compound exhibits an even more complex reaction scenario than the technetium compounds. The thermodynamically most stable final product of ethylene addition to Mn1 is the ethoxy substituted metallacyclopropane Mn1a-2 which has, however, a high activation barrier.  相似文献   
993.
The synthesis system for mesophase formation, using the diprotic anionic surfactant N‐myristoyl‐L ‐glutamic acid (C14GluA) as the structure‐directing agent (SDA) and N‐trimethoxylsilylpropyl‐N,N,N‐trimethylammonium chloride (TMAPS) as the co‐structure‐directing agent (CSDA), has been investigated and a full‐scaled synthesis‐field diagram is presented. In this system we have obtained mesophases including three‐dimensional (3D) micellar cubic Fm m, Pm n, Fd m, micellar tetragonal P42/mnm, two‐dimensional (2D) hexagonal p6mm and bicontinuous cubic Pn m, by varying the C14GluA/NaOH/TMAPS composition ratios. From the diagram it can be concluded that the mesophase formation is affected to a high degree by the organic/inorganic‐interface curvature and the mesocage–mesocage electrostatic interaction. Bicontinuous cubic and 2D‐hexagonal phases were found in the low organic/inorganic‐interface curvature zones, whereas micellar cubic and tetragonal mesophases were found in the high organic/inorganic‐interface curvature zones. Formation of cubic Fm m and tetragonal P42/mnm was favoured in highly alkaline zones with strong mesocage–mesocage interactions, and formation of cubic Pm n and Fd m was favoured with moderate mesocage–mesocage interactions in the less alkaline zones of the diagram.  相似文献   
994.
A pseudo-first-order catalytic mechanism in which both reactant and product of a redox reaction are strongly immobilized on an electrode surface is theoretically analysed under conditions of square-wave (SWV) and staircase cyclic voltammetry (SCV). A mathematical procedure is developed under diffusionless conditions. The relationships between the properties of the voltammetric response and both the kinetic parameters of the redox reaction and the parameters of the excitation signal are studied. The phenomenon of the quasi-reversible maximum is discussed. A comparative study between SWV and SCV is presented and the limitations and advantages of both techniques, from analytical and kinetic points of view, are discussed. The theoretical predictions are experimentally confirmed by the redox reaction of azobenzene in the presence of hydrogen peroxide as an oxidizing agent. Electronic Publication  相似文献   
995.
The mechanisms for the three products ZrS+, and ZrOS+ of the title reaction have been studied by using B3LYP/6-311+G* and CCSD(T)/SDD+6-311+G* methods. It is found that both ZrS+ and formations involve the same O/S exchange process via a four-center transition state TS12 to form an intermediate IM2. Exception of that IM2 can dissociate into the ZrS+ product, a favorable intramolecular rearrangement mechanism associated with the formation has been identified, which explains why ZrS+ was excluded as a precusor for the formation and why the lower efficiency of the ZrS+ formation was observed in experiment. For the formation of ZrOS+, two parallel channels (path A and B) yielding their corresponding product isomer have been identified. Path B involving an insertion–elimination mechanism with a calculated barrier underestimated by ca. 25.0 kJ/mol should be attributed to the threshold of 114.8 ± 12.5 kJ/mol assigned in the experiment. But path A should make some contributions to the formation of ZrOS+ at elevated energy.  相似文献   
996.
The kinetic regularities of the heat release during the thermal decomposition of liquid NH4N(NO2)2 at 102.4–138.9 °C were studied. Kinetic data for decomposition of different forms of dinitramide and the influence of water on the rate of decomposition of NH4N(NO2)2 show that the contributions of the decomposition of N(NO2)2 and HN(NO2)2 to the initial decomposition rate of the reaction at temperatures about 100 °C are approximately equal. The decomposition has an autocatalytic character. The analysis of the effect of additives of HNO3 solutions and the dependence of the autocatalytic reaction rate constant on the gas volume in the system shows that the self-acceleration is due to an increase in the acidity of the NH4N(NO2)2 melt owing to the accumulation of HNO3 and the corresponding increase in the contribution of the HN(NO2)2 decomposition to the overall rate. The self-acceleration ceases due to the accumulation of NO3 ions decreasing the equilibrium concentration of HN(NO2)2 in the melt. For Part 2, see Ref. 1. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 3, pp. 395–401 March 1998.  相似文献   
997.
王晓妮  张洁等 《中国化学》2003,21(3):311-319
With the combination of the the stoichiometric displacement model for retention (SDM-R) in reversed phase liquid chromatography (RPLC) and the stoichiometric displacement model for adsorption (SDM-A) in physical chemistry,the total number of moles of the re-solvated methanol of stationary phase side.nr,and that of solute side in the mobile phase,q,corresponding the one mole of the desorbing solute,were separately determined and referred as the characterization parameters of the contributions of the adsorption mechanism and partition mechanism to the solute retention,respectively.A chromatographic system of insulin,using mobile phase consisting of the pseudo-homologue of alcohols(methanol,ethanol and 2-propanol)-water and trifluoroacetic acid was employed.The maximum number of the methanol layers on the stationary phase surface was found to be 10.6,only 3 of which being valid in usual RPLC,traditionally referred as a volume process in partition mechanism.However,it still follows the SDM-R.Both of q and nr of insulin were found not to be zero,indicating that the retention mechanism of insulin is a mixed mode of partition mechanism and adsorption mechanism.When methanol is used as the organic modifier,the ratio of q/nr was 1.13,indicating the contribution to insulin retention due to partition mechanism being a bit greater than that due to adsorption mechanism.A linear relationship between q,or nr and the carbon number of the pseudo-homologue in the mobile phase was also found.As a methodology for investigating the retention mechanism retention and behavior of biopolymers.a homologue of organic solvents as the organic modifier in mobile phase has also been explored.  相似文献   
998.
The thermal degradation of poly-2,2′,3,3′,4,4′,5,5′,6,6′,7,7′,7″-tridecafluoroheptylacrylate and poly-2,2′,3,3′,4,4′,5,5′,6,6′,7,7′-dodecafluoroheptylmethacrylate has been studied in isothermal conditions at 450-750 °C using pyrolysis-gas chromatography. The type and composition of the pyrolysis products give useful information about mechanism of thermal degradation. It was shown that the main thermal degradation process for both polymers is random main-chain scission. The major degradation products for fluorinated polyacrylate are monomer, dimer, saturated diester, trimer, and corresponding methacrylate. The fluorinated polymethacrylate gives monomer as the main product of thermal destruction. As a result of side-chain reaction, the thermal degradation of the fluorinated polyacrylate also produces remarkable amounts of alcohol. On the other hand, the respective alcohol is only a minor component among the pyrolysis products of the fluorinated polymethacrylate. For both polymers, the main nontrivial degradation product coming from the alkyl ester decomposition is the corresponding fluorinated cyclohexane. The formation of the fluorinated cyclohexanes may be accounted for a nucleophilic bimolecular substitution pathway.  相似文献   
999.
ZnS with hexagonal prism morphology has been synthesized successfully by molten-salt method with ZnS nanoparticles as precursors, and the ZnS nanoparticles were prepared by one-step solid-state reaction of Zn(CH3COO)2·2H2O with Na2S·9H2O at ambient temperature. Crystal structure and morphology of the product were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and HRTEM. Ultraviolet-visible optical absorption spectrum of the ZnS hexagonal prism shows a distinct red shift from that of bulk ZnS crystals and photoluminescence spectrum exhibits strong emissions at 380 and 500 nm, respectively. Further experiments were designed and the formation mechanism of the ZnS hexagonal prism has been also discussed in brief.  相似文献   
1000.
研究了腰果酚在无光引发剂条件下的紫外光固化反应,并用IR、UV、元素分析、GPC等分析手段分析了腰果酚的紫外光固化机理及其固化膜性能。结果表明:在紫外光辐照下,腰果酚通过侧链发生氧化聚合反应,和酚羟基的邻对位失去质子形成的自由基引起的苯环缩合反应,最终形成体型高聚物。腰果酚的紫外光固化膜的常规物理机械性能、抗溶剂性、耐化学介质腐蚀性、热稳定性和抗紫外线性能均优于腰果酚醛缩聚物(PC)涂膜。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号